Nonparametric regression estimation using penalized least squares

نویسندگان

  • Michael Kohler
  • Adam Krzyzak
چکیده

We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsity oracle inequalities for the Lasso

This paper studies oracle properties of !1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and t...

متن کامل

Consistent Covariate Selection and Post Model Selection Inference in Semiparametric Regression

This paper presents a model selection technique of estimation in semiparametric regression models of the type Yi = β ′Xi + f(Ti) + Wi, i= 1, . . . , n. The parametric and nonparametric components are estimated simultaneously by this procedure. Estimation is based on a collection of finite-dimensional models, using a penalized least squares criterion for selection. We show that by tailoring the ...

متن کامل

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models

Single-index model is a potentially tool for multivariate nonparametric regression, generalizes both the generalized linear models(GLM) and the missing-link function problem in GLM. In this paper, we extend Cook’s local influence analysis to the penalized Gaussian likelihood estimator based on P-spline for the partially linear single-index model. Some influence measures, based on the minor pert...

متن کامل

Adaptive Penalized M-estimation with Current Status Data

Current status data arises when a continuous response is reduced to an indicator of whether the response is greater or less than a random threshold value. In this article we consider adaptive penalized M-estimators (including the penalized least squares estimators and the penalized maximum likelihood estimators) for nonparametric and semiparametric models with current status data, under the ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001